
Leveraging Compiler-Based Tools
for Performance Portability

Protonu Basu+, Samuel Williams+, Brian Van
Straalen+, Leonid Oliker+, Philip Colella+, Mary Hall*

+ Lawrence Berkeley National Laboratory
* University of Utah

Performance and Productivity Challenge –
GSRB Smooth

Section 1: Berkeley Lab Mission
SUBTITLE HERE IF NECESSARY

/* Laplacian 7-point Variable-Coefficient Stencil */
for (k=0; k<N; k++)
 for (j=0; j<N; j++)
 for (i=0; i<N; i++

 temp[k][j][i] = b * h2inv * (
 beta_i[k][j][i+1] * (phi[k][j][i+1] – phi[k][j][i])

 -beta_i[k][j][i] * (phi[k][j][i] – phi[k][j][i-1])
 +beta_j[k][j+1][i] * (phi[k][j+1][i] – phi[k][j][i])
 -beta_j[k][j][i] * (phi[k][j][i] – phi[k][j-1][i])
 +beta_k[k+1][j][i] * (phi[k+1][j][i] – phi[k][j][
 -beta_k[k][j][i] * (phi[k][j][i] – phi[k-1][j][i]));

/* Helmholz */
for (k=0; k<N; k++)
 for (j=0; j<N; j++)
 for (i=0; i<N; i++)

 temp[k][j][i] = a * alpha[k][j][i] * phi[k][j][i] –
 temp[k][j][i];

/* Gauss-Seidel Red Black Update */
for (k=0; k<N; k++)
 for (j=0; j<N; j++)
 for (i=0; i<N; i++){

 if ((i+j+k+color)%2 == 0)
 phi[k][j][i] = phi[k][j][i] – lambda[k][j][i] *

 (temp[k][j][i] – rhs[k][j][i]);}

Code A: miniGMG baseline smooth
operator approximately 13 lines of code

Code B: miniGMG optimized smooth
operator approximately 170 lines of code

GPU code for GSRB Smooth

Code C: miniGMG optimized smooth operator for GPU, 308 lines of code for just
kernel

Section 1: Berkeley Lab Mission
SUBTITLE HERE IF NECESSARY

Background: Challenges

•  Performance portability
Across fundamentally different CPU and GPU architectures

•  Programmer productivity
High performance implementations will require low-level specification in

standard MPI+OpenMP, CUDA

•  Software maintainability and portability
May require maintaining multiple implementation of same

computation

Section 1: Berkeley Lab Mission
SUBTITLE HERE IF NECESSARY

Possible ways to address the
challenges

•  Follow MPI and OpenMP standards
Same code unlikely to perform well across CPU and GPU

Low level specification may be required for high-performing OpenMP
Vendor C and Fortran compilers not optimized for HPC workloads

•  Some domain-specific framework strategies
Libraries, C++ template expansion, standalone DSL

Not composable with other optimizations

Section 1: Berkeley Lab Mission
SUBTITLE HERE IF NECESSARY

Compiler Based Approach

CHiLL is a source-to-source
compiler framework with a script

interface

Autotuner

CHiLL

Code Variants

Novel Domain-Specific
optimization implemented in CHiLL

•  Exploit existing compiler
transformations to accomplish

optimization goals

•  Develop new domain-specific
transformations and required
analysis and code generation

support

•  Supports autotuning

Section 1: Berkeley Lab Mission
SUBTITLE HERE IF NECESSARY

Compiler Based Approach

Autotuner

CHiLL

Code Variants

•  Composable transformation and
code generation

Leverage rich set of existing
transformations and code generation

capability

Mathematically represented using
polyhedral framework

•  Extensible to new domain-

specific transformations and
decision algorithms

Compose with existing transformations

Section 1: Berkeley Lab Mission
SUBTITLE HERE IF NECESSARY

Experience with CHiLL

Input

Existing
Transformations

Domain-specific
transformations

Autotuning

Geometric
Multigrid

Sequential C
computation
(w/ MPI and
OpenMP
harness)

Communication-
avoiding: fusion, tile,
wavefront
(skew&permute),
OpenMP, CUDA

Ghost zones,
Partial sums

Ghost zone
depth,
threading,
strategy at
each level of
V-cycle

Tensor
Contraction

Mathematical
Formula

Tile, permute, scalar
replacement, unroll,
CUDA

Rewriting, Decision
algorithm

Loop order,
CUDA
threading

Sparse
Matrix
Computation

Sequential C
with CSR
matrix

Tile, permute, skew,
unroll, reduction,
scalar expansion,
OpenMP, CUDA

Generate
inspectors,
coalesce, make-
dense, compact,
split, level sets

Threading,
matrix repr.

Performance Bottlenecks

Performance Limited by
Memory Bandwidth!

Stenc
il

Coefficie
nt

Iteratio
n

Flop
s

Byte
s

AI

7-point Jacobi Constant 8 24 0.33

Stencil Coefficient Iteration Flop
s

Byte
s

AI

7-point

7-point

13-point

27-point

125-point

GSRB

Jacobi

Jacobi

Jacobi

Jacobi

Jacobi

Variable

Constant

Constant

Constant

Constant

17

17

8

15

32

134

80

48

24

24

24

24

0.21

0.35

0.33

0.63

1.33

5.58

beta_i[]

beta_j[]

Increasing Flops/B
yte

!

Section 1: Berkeley Lab Mission
SUBTITLE HERE IF NECESSARY

Geometric Multigrid (GMG)

GMG solves the linear
system Ax=B, where A is

a stencil applied on a
grid

MG is a hierarchical
approach to solving the

linear system Ax=B

progress within V-cycle!

B o t t o m S o l v e

Smooth

Residual

Interpolation

GMG
V-cycle

Restriction

Smooth

miniGMG Domain 256^3

List of 64^3 Boxes
Computed In Parallel (OMP)

Smooth Dominates
Runtime

Domain
decomposed to MPI

processes (2)

64

32

16

8

4

48 iterations
of Smooth

4 iterations
of smooth

GMG
V-cycle

1
2

Memory Bandwidth
Bound

Stencil/Smooth

CA

CA

PS

CA

PS

Communication-
Avoiding Optimizations

Stencil Reordering:
Partial Sums

Compute Bound by High
FLOP intensity and Poor

Register Reuse

Memory Bandwidth Bound

Compiler Autotuning
Matches Manual

Tuning!

Compiler Autotuning Beats Roofline*!

0

20

Ti
m

e
(s

ec
on

ds
)

GSRB Smooth on 64, 643 boxes

CUDA-CHiLL

0

1000

2000

3000

4000

5000

7pt 27pt 13pt 125pt 7pt 27pt 13pt 125pt

Edison Hopper

M
St

en
ci

ls
/s

Smoother Performance (Fine Grid)

for (k=0; k<N; k++)
 for (j=0; j<N; j++)
 for (i=0; i<N; i++)

 /* statement S0 */
 temp[k][j][i] = b * h2inv * (
 beta_i[k][j][i+1] * (phi[k][j][i+1] – phi[k][j][i])

 -beta_i[k][j][i] * (phi[k][j][i] – phi[k][j][i-1])
 +beta_j[k][j+1][i] * (phi[k][j+1][i] – phi[k][j][i])
 -beta_j[k][j][i] * (phi[k][j][i] – phi[k][j-1][i])
 +beta_k[k+1][j][i] * (phi[k+1][j][i] – phi[k][j][i])
 -beta_k[k][j][i] * (phi[k][j][i] – phi[k-1][j][i]));

for (k=0; k<N; k++)
 for (j=0; j<N; j++)
 for (i=0; i<N; i++)

 /* statement S1 */
 temp[k][j][i] = a * alpha[k][j][i] * phi[k][j][i] – temp[k][j][i];

for (k=0; k<N; k++)
 for (j=0; j<N; j++)
 for (i=0; i<N; i++){

 if ((i+j+k+color)%2 == 0)
 /* statement S2 */
 phi[k][j][i] = phi[k][j][i] – lambda[k][j][i] *(temp[k][j][i] – rhs[k][j][i]);}

7point VC
stencil

GSRB
update

S0

S2

S1

Baseline GSRB Smooth

Wavefront: Reducing Vertical Communication

residual

j

k

i

Wavefront fuses multiple grid
sweeps reducing DRAM traffic

Wavefront: Reducing Vertical Communication

j
k

i

smooth (red)

smooth (2nd red)
smooth (black)

smooth (2nd black)

smooth (2nd red) smooth (red)

smooth (2nd red)
smooth (black)

smooth (2nd black)

smooth (red)

smooth (2nd red)
smooth (black)

smooth (2nd black)

smooth (red)

smooth (2nd red)
smooth (black)

smooth (2nd black)

Wavefront = Loop Skew + Loop Permute
We tune to find the ghost zone depth and wavefront depth!

OpenMP Code Generation: Nested Parallelism

Thread 0 Thread 1 Thread 2 Thread 3

residual

Wavefront has a larger working set
Thread blocking to manage working set

j

k

i

known (d = 4) #d sets ghost zone
original()
skew ([0,1,2], 2, [2,1])
permute ([2,1,3,4])
tile(s0,3,TJ,2,counted)
gen_omp_parallel_region (locks, y)

Autotuner

CHiLL	
script1	

CHiLL	
script
2	

CHiLL	
script
3	

smooth
1.c	

Sets ghost zone depth

Create a wavefront

Generate parallel code

For each level of the V-cycle, our search
space is:

•  Ghost zone depth ‘d’ {1,2,4,5}
•  Fused Code or Wavefront variant
•  Thread decomposition <x, y>, where x*y

= #cores/chip

CHiLL

smooth
2.c	

smooth
3.c	

Experimental Methodology

Performance of GSRB Smooth

19

Box
64
32
16
8
4

Edison
<4,3>
<4,3>
<12,1>
<12,1>
<12,1>

Hopper
<2,3>
<2,3>
<6,1>
<6,1>
<6,1>

Thread
Decomposition
<outer, inner>

Edi/Hop
4
4
2
2
2

Code
Variant

Edi/Hop
Wave
Wave
Wave
Fused
Fused

Ghost
Zone

Manual tuning spent considerable effort on finer 64^3
boxes but did not specialize for smaller boxes

Autotuning picked nested- parallelism
for finer boxes; manually tuned code

used intra-box threading

0

2

4

6

64 32 16 8 4

handtuned

Sp
ee

du
p

O
ve

r B
as

el
in

e

Box Size

0	

1	

2	

3	

4	

5	

64	 32	 16	 8	 4	

Edison

Hopper

CUDA-CHiLL
LL Lua/Python Interface

CUDA-CHiLL

CUDA-CHiLL is a thin layer built on
top of CHiLL to generate CUDA

code

Deconstructs (tiles) a loop nest, and
assigns loops to threads and blocks

CHiLL

Parallelization via Loop Tiling

for(box = 0; box <= 63; box++) {
 for(k = 1; k <= 64; k++) {
 for(jj = 0; jj <= 3; jj++) {
 for(j = 0; j <= 15; j++) {
 for(ii = 0; ii <= 1; ii++) {
 for(i = intMod(-j-k-color-1,2); i <= 31; i += 2) {
 S0();
 S1();
 S2(); }}}}}}

for(box=0; box<64; box++){
 for(k=1; k<=64; k++){
 for(j=1; j<=64; j++){
 for(i=1; i<=64; i++){
 if((i+ j + k + (color)) % 2 == 1) {

 S0();
 S1();
 S2();}}}}

Input GSRB smooth

Tiled loop nest with loops marked
for blocks/threads

mark as block dim z (BZ=64)

mark as block dim y (BY=4)

mark as block dim x (BX=2)

mark as thread dim x (TX=32)

mark as thread dim y
(TY=16)

BZ is fixed to 64 (number of boxes)

Tune to find best value of TX, TY
(dimensions of 2D block)

BX=64(box size)/TX, BY=64(box size)/TY

CUDA-CHiLL

/* gsrb.lua, variable coefficient GSRB, 643 box size */
init("gsrb_mod.cu", "gsrb",0,0)
dofile("cudaize.lua”) # custom commands in lua

set up parallel decomposition, adjust via
autotuning
TI=32
TJ=4
TK=64
TZ=64

tile_by_index(0, {"box","k","j", "i"},{TZ,TK, TJ, TI},
{l1_control="bb", l2_control="kk", l3_control="jj",
l4_control="ii"},{"bb","box","kk","k","jj","j","ii","i"})

cudaize(0, "kernel_GPU",
{_temp=N*N*N*N,_beta_i=N*N*N*N,
_phi=N*N*N*N},{block={"ii","jj","box"},
thread={"i","j"}},{})

Performance on K20c

23

0

10

20

30

40

50

60

70

80

90
<8

,4
>

<8
,8

>
<8

,1
6>

<8

,3
2>

<8

,6
4>

<1

6,
4>

<1

6,
8>

<1

6,
16

>
<1

6,
32

>
<1

6,
64

>
<3

2,
4>

<3

2,
8>

<3

2,
16

>
<3

2,
32

>
<6

4,
4>

<6

4,
8>

<6

4,
16

>

%
 E

ffe
ct

iv
e

D
R

A
M

 B
an

dw
id

th

2D Thread Blocks <TX,TY>

% DRAM Bandwidth achieved by GSRB
Smooth on 64, 643 boxes

CUDA-CHiLL

Handtuned

Handtuned-VL

Higher-Order Stencils

24

1.0E-15

1.0E-12

1.0E-09

1.0E-06

1.0E-03

1.0E+00

0.001 0.01 0.1 1 10 100

O
bs

er
ve

d
Er

ro
r (

L2
 n

or
m

)

Requisite Memory per Vector (GB)

High-Order Multigrid in miniGMG

7pt (2nd order)
13pt (4th order)
27pt (6th order)
125pt (10th order)

Higher-order stencil promise huge reduction in data
movement, but maybe bottlenecked by floating-

point pressure and poor register reuse

Higher-Order Stencils

25

Higher-order stencil promise huge reduction in data
movement, but maybe bottlenecked by floating-

point pressure and poor register reuse

Stenci
l

Coefficien
t

Iteration Flop
s

Byte
s

AI

7-point

13-point

27-point

125-point

Jacobi

Jacobi

Jacobi

Jacobi

Constant

Constant

Constant

Constant

8

15

32

134

24

24

24

24

0.33

0.63

1.33

5.58

Partial Sums

for (j=0; j<N; j++)
 for (i=0; i<N; i++){

 out[k][j][i] = w1*
 (in[j-1][i] + in[j+1][i]
 +in[j][i-1] + in[j][i+1])
 + w2 *(in[j-1][i-1] + in[j+1][i-1]
 +in[j-1][i+1] + in[j+1][i+1])

 + w3* in[j][i];
 }

i

j

2D 9-point CC stencil

Right (leading) edge of points from the input
grid is reused in the next two iterations of the

inner-loop

The right edge acts as the
center and left edge for the

next iterations

Partial Sums

Exploiting symmetry reduces flops significantly for 27, 125-pt stencils

For 3D stencils we pick the leading plane

For 125-pt stencil, 124 adds went down to 38 adds (over 3x reduction)

Smooth Performance

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

7pt 27pt 13pt 125pt 7pt 27pt 13pt 125pt

Edison Hopper

M
St

en
ci

ls
/s

Smoother Performance (Fine Grid)

+Fusion & Partial Sums

+Fusion

Baseline

Roofline Memory Bound

Partial sums takes the
performance of the

smoother to near the
roofline bound

Naively one may conclude
reaching the bound is the
upper end of performance

Achieving memory
bound implies we can

now apply
communication-avoiding

optimizations!

Smooth Performance

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

7pt 27pt 13pt 125pt 7pt 27pt 13pt 125pt

Edison Hopper

M
St

en
ci

ls
/s

Smoother Performance (Fine Grid)

All Optimizations

+Fusion & Wavefront

+Fusion & Partial Sums

+Fusion

Baseline

Roofline Memory Bound

 Transformation must work with other CA optimizations!

Partial Sums – CHiLL Script

/* jacobi_box_4_64.py, 27-pt stencil, 643 box size */
from chill import *
#select which computation to optimize
source('jacobi_box_4_64.c')
procedure('smooth_box_4_64')
loop(0)
original() # fuse wherever possible
#create a parallel wavefront
skew([0,1,2,3,4,5],2,[2,1])
permute([2,1,3,4])
#partial sum for high order stencils and fuse result
distribute([0,1,2,3,4,5],2)
stencil_temp(0)
stencil_temp(5)
fuse([2,3,4,5,6,7,8,9],1)
fuse([2,3,4,5,6,7,8,9],2)
fuse([2,3,4,5,6,7,8,9],3)
fuse([2,3,4,5,6,7,8,9],4)

Summary and Conclusions

•  Compiler technology can be leveraged for automated
architecture-specific optimization from high-level

specification for several motifs

•  Compiler technology allows composing a sequence of
transformations, and mixing known and novel domain-

specific optimizations

•  Performance rivaling manually-tuned code and
sometimes better

Extra Slides

32 Footer

 Arithmetic Intensity (AI) of Stencil Computation
for (k=0; k<N; k++)
 for (j=0; j<N; j++)
 for (i=0; i<N; i++){

 phi_out[k][j][i] = w1 * phi_in[k][j][i]

 + w2 * (phi_in[k+1][j][i] + phi_in[k-1][j][i]
 + phi_in[k][j+1][i] + phi_in[k][j-1][i]
 + phi_in[k][j+1][i] + phi_in[k][j-1][i]);

}

6 adds+2 muls = 8
flops

Read N3 Grid (phi_in)

Write Allocate N3 Grid (phi_out)

Write N3 Grid (phi_out)

Floating Point Ops (flops)

Data Moved (Bytes)

8 * N3

3 * N3 * 8
= = 0.33

AI

Ideal cache behavior, compulsory (cold) misses only

Machine Balance (Edison)

(very) Abstract Node

COMPUTE

CACHES

DRAM (Memory)

88 GB/s

DP 460.8
GFlop/s

Floating Point Ops per second

DRAM Memory Bandwidth

460.8

88
=

Machine Balance = 5.2

To achieve peak
performance, code

needs to execute 5.2
flops per byte!

i

j

for (j=0; j<N; j++)
 for (i=0; i<N; i++){

 out[k][j][i] = w1*
 (in[j-1][i] + in[j+1][i]
 +in[j][i-1] + in[j][i+1])
 + w2 *(in[j-1][i-1] + in[j+1][i-1]
 +in[j-1][i+1] + in[j+1][i+1])

 + w3* in[j][i];
 }

2D 9-point CC stencil
Right (leading) edge of points from the input grid is
reused in the next two iterations of the inner-loop

The right edge acts as the center
and left edge for the next iterations

Opportunity for Data and Computation
Reuse

35

i
j

(j,i) (0,
0)

(1,
1)

array of
coefficients

Input grid

B
0

B
1

B
2

Partial Sum B0

Partial Sum B1

Partial Sum B2

Right Edge for
(j,i)
Center for (j,i+1)

Left Edge for (j,i+2)

out [j][i] = R [i] + C [i] + L [i]

Partial Sums are buffered in linear buffers R , C,
L

R[i]
C[i+1]

L[i+2]

Buffering Partial Sums: Exploiting Reuse

36

(j,i) (0,0
)

(1,1
)

array of
coefficients

Input
grid

B0 B
1

B
2 R[i]

C[i+1]
L[i+2]

r1 = in[j][i+1];
r2 = in[j+1][i+1] + in[j-1][i
+1];

out[j][i] = L[i] + C[i]+ R[i];

R[i] = w1 * r1 + w2 * r2;
C[i+1] = w3 * r1 + w1 * r2;
L[i+2] = R[i];

for (j=0; j<N; j++)
 for (i=0; i<N; i++){

 out[k][j][i] = w1*
 (in[j-1][i] + in[j+1][i]
 +in[j][i-1] + in[j][i+1])
 + w2 *(in[j-1][i-1] + in[j+1][i-1]
 +in[j-1][i+1] + in[j+1][i+1])

 + w3* in[j][i];

 }

2D 9-point
stencil

loads the right
edge of points

factor the points
multiplied by the
same coefficient

Factors are reused to
compute partial sums
saving flops (5 adds

instead of 8)

after compiler
transformatio
n Due to symmetry of

coefficients the loaded edge
(plane) can be factored into

sums

Exploiting Symmetry to Reduce
Computation

37

Exploiting Symmetry to Reduce
Computation

Exploiting symmetry reduces flops significantly for 27, 125-pt stencils

For 3D stencils we pick the leading plane

For 125-pt stencil, 124 adds went down to 38 adds (over 3x reduction)

38

miniGMG Domain 256^3

List of 64^3 Boxes
Computed In Parallel (OMP)

Smooth Dominates
Runtime

Domain
decomposed to MPI

processes (2)

64

32

16

8

4

48 iterations
of Smooth

4 iterations
of smooth

GMG
V-cycle

3
9

